Наименьшее общее кратное - significado y definición. Qué es Наименьшее общее кратное
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es Наименьшее общее кратное - definición

НАИМЕНЬШЕЕ НАТУРАЛЬНОЕ ЧИСЛО, КОТОРОЕ ДЕЛИТСЯ НА ЦЕЛЫЕ ЧИСЛА БЕЗ ОСТАТКА
Lcm

НАИМЕНЬШЕЕ ОБЩЕЕ КРАТНОЕ         
наименьшее из целых положительных чисел, делящихся без остатка на каждое из данных целых чисел. Напр., наименьшее общее кратное 2, 3 и 4 есть 12.
Наименьшее общее кратное         

двух или нескольких натуральных чисел - наименьшее, делящееся на каждое из них, положительное число. Например, Н. о. к. чисел 2 и 3 есть 6, чисел 6, 8, 9, 15 и 20 есть 360. Н. о. к. пользуются при сложении и вычитании дробей: наименьшим общим знаменателем двух или нескольких дробей является Н. о. к. их знаменателей. Если известны разложения заданных чисел на простые множители, то для получения Н. о. к. этих чисел нужно составить произведение всех множителей, взяв каждый наибольшее число раз, какое он встречается. Так, 6 = 2․3, 8 = 2․2․2, 9 = 3․3, 15 = 3․5 и 20 = 2․2․5; поэтому Н. о. к. 6, 8, 9, 15 и 20 есть 2․2․2․3․3․5 = 360. Понятие Н. о. к. применимо не только к числам. Так, например, Н. о. к. двух или нескольких многочленов есть многочлен наинизшей степени, делящийся на каждый из данных. См. также Наибольший общий делитель.

Наименьшее общее кратное         
Наиме́ньшее о́бщее кра́тное (\mathrm{HOK}) двух целых чисел m и n есть наименьшее натуральное число, которое делится на m и n без остатка, то есть кратно им обоим. Обозначается одним из следующих способов:

Wikipedia

Наименьшее общее кратное

Наиме́ньшее о́бщее кра́тное ( H O K {\displaystyle \mathrm {HOK} } ) двух целых чисел m {\displaystyle m} и n {\displaystyle n} есть наименьшее натуральное число, которое делится на m {\displaystyle m} и n {\displaystyle n} без остатка, то есть кратно им обоим. Обозначается одним из следующих способов:

  • H O K ( m , n ) {\displaystyle \mathrm {HOK} (m,n)} ;
  • [ m , n ] {\displaystyle [m,n]} ;
  • L C M ( m , n ) {\displaystyle \mathrm {LCM} (m,n)} или l c m ( m , n ) {\displaystyle \mathrm {lcm} (m,n)}     (от англ. least common multiple).

Пример: H O K ( 16 , 20 ) = 80 {\displaystyle \mathrm {HOK} (16,20)=80} .

Наименьшее общее кратное для нескольких чисел — это наименьшее натуральное число, которое делится на каждое из этих чисел.

Одно из наиболее частых применений H O K {\displaystyle \mathrm {HOK} } — приведение дробей к общему знаменателю.

¿Qué es НАИМЕНЬШЕЕ ОБЩЕЕ КРАТНОЕ? - significado y definición